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A BPM SOLUTION FOR ELLIPTIC PLATES
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Abstract—A higher-order boundary perturbation method (BPM), formulated to treat a class of
problems defined in an elliptic domain, is developed to obtain the Green's function due to an
eccentric source. The method. based on a dual perturbation, leads to expansion solutions expressed
in terms of ellipticity and eccentricity perturbation parameters. General explicit expressions for
equivalent boundary conditions on the perturbed boundary are first derived to treat the class of
probiems for which the associated boundary conditions are of the Dirichlet or Neumann type. The
BPM is applied to investigate a clamped elliptic plate subject to eccentric loads. Estimates of the
accuracy of the method are given. The BPM is seen to yield reasonably accurate solutions for
moderately elliptic domains and moderate ellipticities.

I. INTRODUCTION

In this paper, an analytic solution for the bending of a plate of moderate ellipticity, clamped
along the boundary and subjected to a lateral force applied eccentrically with respect to the
centre is considered and obtained.

While plates having relatively simple geometric shapes (rectangular, circular, etc.) have
been analysed and solutions obtained for a varicty of loading cases and support conditions,
for shapes other than these, one usually turns to approximate or numerical methods. Among
the latter, finite clement methods have been extensively used and often yield important and
usclul results. However, finite clement techniques do not have the capability of establishing
analytic expressions which express a trend in the behaviour. On the other hand, the method
developed here leads to expressions which yield the response for bodies of varying geometries
and therefore represents a significant advantage over numerical methods which require a
complete recalculation for each specific geometry considered.

[t appears that the only cases of bending of elliptic plates which have been treated
analytically are those of uniformly loaded plates : an exact solution for the clamped plate,
obtained by Bryan, is given by Love[l]. The corresponding solution for a simply supported
plate was given by Galerkin{2]. Other loading cases apparently have not been treated since
the solutions usually require resorting to elliptic coordinates (with the ensuing complexity
in the higher-order boundary conditions) or the use of Mathicu functions the numerical
evaluation of which presents considerable difficulties. Indeed, from a perusal of the litera-
ture, it appears that even the symmetric case of a centrally loaded elliptic plate has not been
investigated.

The more complex problem considered here, an eccentrically loaded elliptic plate, is
not amenable to a direct and tractable analytic solution for all ellipticities and eccentricities.
However, for small to moderate ellipticities and eccentricities, the problem may be treated
by a boundary perturbation method (BPM).

Recently, Parnes and Beltzer(3] developed a BPM for the separate treatment of systems
existing in an elliptic domain as well as for systems defined in circular domains and subject
to eccentric forces. While the development of Ref. [3] does not treat the combination of
ellipticity and eccentricity, it does provide a basis and preliminary expressions for the
investigation of the present problem using a higher-order BPM scheme. Some aspects of
the BPM have been studied by Parnes[4] where it was shown that a higher-order BPM leads
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to substantially accurate results for moderate ellipticities or eccentricities and yields an
upper bound for the stiffness of elastic systems.

Following the methodology of Ref. [3], the general expressions for a second-order
scheme which permit a resolution of the problem at hand is developed first in Section 2.
The treatment of this section is quite general and is not confined to plates: general two-
dimensional problems are considered for a Green's function in an elliptic domain. for which
the associated boundary conditions are of the Dirichlet or Neumann type. Appropriate
transformations and expressions are derived by means of a dual perturbation, leading to
the required equivalent boundary conditions on the perturbed curves.

In Section 3, the plate problem is treated as a particular case of the general development.
[t can be noted that once the basic expressions of the previous section have been established.
the solution. while requiring considerable algebraic manipulations, leads to simple
expressions dependent on the non-dimensional ellipticity and eccentricity perturbation
parameters.

In Section 4, numerical results are presented for the plate displacements along the
principal axes. The effects of ellipticity and eccentricity are analysed. The results obtained
by the BPM are compared with a finite element solution in order to provide an indication
of the accuracy.

2. GENERAL BPM EXPRESSIONS FOR ECCENTRIC SOURCES IN AN ELLIPTIC DOMAIN

An elliptic domain is considered, bounded by a curve C, with semi-major and semi-
minor axes a and b, respectively, and lying in the x~y plane with center 0. The ellipticity is
defined by

e=ualb-1. )

The governing differential equation for the Green's function duc to a load (or source)
of strength P acting at a point 0, having eccentricity / with respect to 0, is

LS (r,0)] = Pi(r) 2

where (r, 0) is the polar coordinate sysem with origin at 0 (Fig. 1), L the linear differential
operator, and § the Dirac-delta function.
The appropriate boundary conditions considered here are prescribed as

Sfle, = fo and/or

d .
anc. =/, (3a,b)

where f;, and f, are known quantities and n, is normal to C, at all points.

Clearly the problem, as posed by eqns (2) and (3) is not amenable to a direct analytic
solution. If it is assumed however, that f(r, 0) is analytic throughout the x~y plane, then
solutions may be found by considering the curve C, to be a perturbation of a circular curve

Ce Ne

b\,< €sa/b-i
8 X
N

Fig. |. Geometry of the problem.
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C,, centred about point 0 (Fig. 2). on which appropriate equivalent boundary conditions
are prescribed. i.e. one resorts to a BPM. The perturbation relations between the two curves
depend on the ellipticity ¢ defined by eqn (1) and on the eccentricity of 0 with respect to J,
namely

n=-. 1G]

Following generally developed methods of perturbation theory, f(r, 8) is expanded in
a power series in the perturbation parameters €, 4

N N
S0 =Y ¥ e [ 0). &)

im jw0Q

Substituting in eqn (2), using the lincarity property of the differential operator L, and
noting that the relation obtained must be satisfied for all small e > 0, n > 0, yields

LU/ = PS(r) (6a)
and

LUf“" =0; ij=0,1,2,...,N; i+j>0. (6b)

It is noted that eqns (6) represent a sequence of equations which must be satisfied
within the domain bounded by C, and /% must satisfy appropriate boundary conditions
on C,. Attention is now turned to these boundary conditions.

First a polar coordinate system (7, ) is defined with origin at 0, the centre of the
ellipse. A generic point P, on C, is defined as having coordinates (r,, fi) where r(f) is the
variable radial distance from 0 (Fig. 3). Curve C, may then be considered to be a per-
turbation of the circumscribing circle C, of radius a, with points P, on C, being perturbed
points of Py on C,. Symbolically, the perturbation relation C, — C, may be written as

a-—r.=rJfabe). )

The relation between the two circles of identical radius a, C; and C,, is now considered

Fig. 3. Dually perturbed curves.
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where the eccentricity parameter 7 1s not large. Curve C, may then, in turn, be considered
as a perturbation of curve C, with points P, on C, being perturbed points of P, on C,.
Symbolically, the perturbed relation C, — C, may be written as

a—ry=ryla.0.n) (%)

where r, represents the variable radial distance from 0 to curve C,. [t is noted. from Fig.
3. that P, and P, have the same coordinates. namely 7 = r = g and f = 6 in the respective
svstems. Thus. by means of the double mapping

P(r=a0)— Py(f=a0=0)—P(f=r,.0=0).

Letting n represent the normal to curves Cyand C,. it can be noted too that this normal
is in the same direction for both curves. The transformation of a given function f, f(Py) -
S(P) as well as that for /£, (P,) is now sought. In what tollows. expansions will be performed
to order V = 2. Assuming that fis analytic, and observing that P, and P, possess the same
v-coordinate. a Taylor series expansion yields

. . of 1 éf s
Sy = Sr,— Py PI,(’I“)'*' 5 ({‘if\’_d('ltl) . (9)
Now
) of 0 Cf oY
Uy Aoy o (10)
Oxip,  Ordx|p 00 Ox|p
Furthermore, since
U cos 0 1
P cos (1)
o sin 0 [1b
5, = Sin (11b)
and noting that
,,l ).
0 = tan - (llg)
X
one obtains
a0 _ sin ¢ 1
ox r (12)
Substituting in eqn (10)
o sin ¢
(—3~'€=cos ()f,,——»;-[,, (13a)t

and hence, on the circle C,

tHere, and in all subsequent expressions, derivatives with respect to a variable are denoted by a subscript
preceded by a comma, e.g. f, = /0, cte.
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- (cos 0,- 9&)

o

cXx

Pd

Pﬂ

Similarly
sin 20 sin® 0 sin® 0 sin 20
Sor+ fot—fw 3 fo:] . (14)
a a a P,

= [cos: 0f,—

Equation (9) can then be written as
(15)

a
flcq = flC‘,_a"D.\'U]I(",'i' —-—:’—Dx.tm‘('d

where D, and D, are considered as differential operators:

¢ sin@ ¢
D(—cos()e—r—-r—a—o (16a)
.0 sin20 ¢° sinf 0@ 1 ., @ sin20 ¢
D, =cos’ ) :5 —- =+ s 0 — + —5— — 16
T e aors r érl a Ir + P c0° + re ol (160)
which transform the function f|¢- to flc,.
Substituting cqn (5) in the right-hand side of eqn (15) one obtains
' at
/|(“, = F()|<',,"“F||(',,+ 5 F:l(‘,, (17
where
Fole, = ", (18a)
T
Flle,= Y Y nt'¢DL" (a0, (18b)
=0 =0
Frle, = ¥ B[/ " (@ 0)lc,. (18¢)
j=0
Expanding and collecting like powers in 7 and ¢
Sle, =G +eG " +£G, (19)
where
G () = g™ +g" n+g n? (20)
with
gion = [N (21a)
(21b)

(=012

gD =[O gplon
(2lc)

,

. a* ;
(2.5 — 2D [(AW)] (0.7}
g = [ —aD\" + 5 D",

In the above, the operators D' indicate that the operation is to be performed on the
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function /), i.e. D' = D [f""]. etc. [tis to be recalled that the expressions on the right-
hand side of eqns (19)—(21) are evaluated on C,.1.e.atr =a. 8.

For the case of the normal derivative /, at Py, 1t is clear that eqns (19)-(21) remain
the same with /" replaced by f¢/ everywhere, since, as has been noted, the normal
direction on C, is in the same direction as on C,.

Having derived the transformation flc, = flc,. a transformation is required from C,
to C, both for f and f,. This transformation, dependent on the parameter ¢. and given for
a function of the form

2

F!cc z SIG(”(" 8)!(‘ (22)

=0
was derived in Ref. [3]

Fle, =GO+ {GV+,¥,[CV]}e+ {GP + ¥, [G' "]+ ¥2[GO1}e ., (23)

In the above oW, are differential operators acting on functions G, given by

-

= —asin® 0 (‘r (24a)

a
n\y 2=

4 ] b 3 « 3 7:
! sin® 0] (2 sin® 0—cos® 0) - +a sin® 0 — |. (24b)
2 or

or?

It can be noted that for the problem at  hand, upon letting
G D¢, = G0, M, it follows that !7'[(-c = [1c.. Substituting egqns (20) and (21) in
eqn (23) and collecting again like powers in  and ¢, onc obtains

e, = 3 0%+ (g™ 0¥ [y e {650+ 0¥, g1+ P alg Ol (25)
te

The transformation of f, on C, to the normal on C, proceeds in a similar manner. For
a function of the form given by eqn (22), the transformation, derived in Ref. [3] was
established :

oF

| =GO+ + W C e+ (CP +, WG+, 9GO (26)
< 1C,

where the differential operators ,¥, are

9 sin20 0

= —qsin° ) - 4+ —— — 27:
A asin” § 3 + Py (27a)
wo= L sint 02 4+ 92 sin? 0-cos? 0) sin? 0 2
=3 sin 63+2( sin® 0 —cos” 0) sin Eps
é 22 sm 40 3
2 Y a2 .
—i(sin 20) sin® @ sin 20(7 66 yrm Tt (27b)
Proceeding as in the case of f¢, one obtains
8/ (.0} i) (4.0} 2y iy i.0 2
| = Z [+ {g5" +.¥ [ e+ {g57 +. ¥, [g" "]+, ¥ [g“ ")} (28)

on, <, im0

Noting from eqn (21a) that %% = 0.9 0.0 — 0.0 and setting
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fo= 1, (29a)
fo= 120, (29b)

eqn (25) is satisfied for all n and ¢ provided

gu.O) =0 i>0
gV 4 W (g = 0 (30)
L, . , 20
gtl..)+Olyl[g(n.lll+oly2{g(:.0)] =0 } i
Similarly, eqn (28) is satisfied provided
g =0 i>0
g GO @a3n
g(:..)+"\|,ll[g(r.l)]+"\{;:[gh.0)] =0.

Equations (30) and (31) thus represent the required boundary conditions on C,.
Substituting the definitions of eqns (21) and the operators given by eqns (16) and eqns (24)
and (27), leads to the following explicit conditions on /" and f$”|c, (i+j 2 ;i< |,
jsh:

SO = = O] = asin® 0400 (32a)
j'(l,()) = (ID(,"'O’ - a[cos Uff,"'m tm 0/(0 0)] (32b)
/'(l,lb - aD_(,o'“-f'o‘P.[aD“"'u)-'f“'m]

a(cos 0[(’0.“ Sln 0/‘(0 l))

1
—u sin® U[a cos ¢ /1% —sin 0 (ff,}’;"’ - ;/T,,'-‘“)—f},’-"’] (32)
S = =, 0 = asin 0 70— 2120 g (33a)
129 = api9m = of cos 0757 - 300 (o g | (33b)

f'(rl.l) - aDLf’;”"‘n\PnU“'m—aDLO'm]
=a cos 0 {0V —sin 0( ot = f“’")
) . 2 2
+a sin? 0[ (O — g cos 0 %7 +sin 0( o — Effe?;°’+ ngﬁ?"”)]

{1.0)
+sin 20[-— L‘a— +cos 8 f15" ~ sin 0/‘“°’—-sm g foo 2 0/“””]. (33¢)
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Explicit higher-order terms obtained from eqns (30) and (31) for | <i+; <4 (i <2,
J € 2) ure given in Ref. {7].

The formulation of the boundary perturbation method, as derived above, is thus
complete. To summarize. the solution to the boundary value problem

L] = PO(r) (34a)
subject to the boundary conditions on C,

Y

dn,|c,

f(U.O)‘Cu - fl(‘c and;’or ff’O.UllCd — (34[))

ts first obtained. It is observed that this is often the known solution to an axi-symmetric
problem in a circular domain. The method proceeds by solving sequentially a set of
homogeneous equations

LIf“"] =0. i+j>0 (35)

subject to the appropriate boundary condition on C, given by eqns (32) and (33) and the
higher-order expressions presented in Ref. [7]. It is noted that since these individual prob-
lems are solved sequentially, the given boundary conditions on C, for any £ are always
detined, being dependent on f*9 &k < i, I <j. withk+1 < i+j.

3 GENERAL BPM SOLUTION FOR CLAMPED ELLIPTIC PLATE SUBJECTED TO
ECCENTRIC LOADING

3. Formulation and the i = j = 0 case

Bending of an clastic elliptic plate of thickness & with semi-major and semi-minor radii
a and b, respectively, and clamped along the boundary C, is considered. The material
constants of the plate are £, the modulus of elasticity and v, Potsson’s ratio. The plate is
subjected to an eceentric force P acting normal (o the plane of the plate at a point 0 located
a distance [ = an from 0 along the x-axis (Fig. 4).

Denoting the transverse displacement by W(r, 0), the governing equation is

W s
VW, 0) = —5 (36)
where
En®
= 7
R2(1=vY) (37a)
and
 1é¢ 1 8V
4 —3 oy S - ———
V= <0r3 Trats eu=> | (370)
- P
9 °" 9 x
"
|
Y |
¥

z
Fig. 4. Clamped elliptic plate.
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The appropriate boundary conditions are then

Wie, =0 (382)
cW

il ) (38b)
cn, C.

where n, is the normat to C..
Following the previous section, W(r. ) is postulated to be of the form given by eqn
(5) where "= f here and below and it is noted that DV* = L of Section 2.
From eqn (6a). the case i = j = 0 becomes
DV W = ps(r) (39a)
subject to the conditions (see eqns (29))

om _ 0. u/f’ﬂ.ﬂ) =0, r=a. (39b.C)

Equations (39), recognized as representing the axi-symmetric case of a clamped circular

plate subjected to a central point load P, possess the known solution([5]
0.0 2 r I 2 2 }
W = Bl relog + (u"—r") (40a)
a 2
where
P
B=_ . 4
8aD (400)
3.2. The perturbed solutions
Following eqn (6b), W% (r, ) must satisfy
VW ) =0, i=0, j=0, (i+j>0) (41)

subject to the appropriate boundary conditions given by eqns (32) and (33) or eqns (Al)-
(AB).
Suitable solutions of the biharmonic equation are of the form[6]

WD = Cot+ Ciri +Car? log (£>+(a,,:"+/f,,r"”) cos nl) (42)

where Gy, C, Crand a,, B, (n = 1,2,3,...) are constants.

The set of equations using the appropriate boundary conditions are now solved sequen-
tially. The procedure for the first few cases is outlined.

3.2.1. Case i = 0, j = |. Substituting, eqns (40) in eqns (32a) and (33a)

WO =0, WPl = Ba(l —cos 20). (43)

The equations are satisfied if Cy = — Ba*/2, C, = B/2, 2, = B/2, §, = — B/2a" and by
setting the remaining constants appearing in eqn (42) to zero. Hence
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WD) = Bf- [(g—: - !) (l - 2; cos 20)], ()

eqns {(Ala)-(ASa), and making suitable trigonometric substitutions, one obtains

s

5

W‘“’ic, = _§:(3-4 cos 28 +cos 46)

{45a)
, 38 .
WO = —4‘-’(1 ~2 cos 20 +cos 46). (45b)
By matching like terms at r = a, eqn (42) leads to
0.2 B 4 Y by 2 67 &4
WD (r 0) = 3 [Bre=2r°(L +r*/a*) cos 20 +r°/a* cos 46]. (46)

3.2.3. Case i = 1, j = 0. Substituting, eqns (40), (44) and (46} in egns (32b) and (33b),
one obtains, as before, forr = a

w9 =0 (47a)
W = 2Ba cos 0. (47b)

By a matching procedure, the constants of eqn (42) are immediately cevaluated, leading
to

1
w0y = Baz(—- "+ Vr") cos 0. (48)
a

The remaining set in the sequence of problems is solved similarly. Omitting all tedious
algebraic details, the solutions are summarized below

B 273 r’
WU, 0) = = | | 3ar— = | cos 0~ — cos 30 (49)
2 a a
2 3 s 2
W ) = g[zar(—4+ 3'; ) €os ()+7r2<{ - f"j‘) cos 30+ i; (l + i;) cos 50]
8 a’ a a a as
(50)
X B 12,
W (r ) = 5 [ ~2a*+3r'+ ; cos 20] (51)
) Blo s 2 af. 1 re
Wb gy = 3 [3(0"—r‘)-r'(2+ ;) cos 20— 3 cos 40} (52)

WD =

oof txy

[2( —~4a*+5r%) +r2(3l --25 ;%) cos 20

6

r r6 rZ
—6—; cos 40+ —:(«9-*— 1t —:) cos 60]. (53)
a a a
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Finally, then, the solution is given by

W0 =3 Y newe(,o) (54)

i=0 j=Q

where W are given by eqns (40), (44), (46) and (48)—(53).

4. SOLUTION ALONG PRINCIPAL AXES. NUMERICAL RESULTS AND DISCUSSION

4.1. Simplified expressions along principal axes

Along the principal x- and y-axes, the derived expressions for W(r,6) lead to con-
siderable simplifications.

Defining the non-dimensional radial coordinate

o= (55a)
a
and letting
X
5=;. —~a<x<a (55b)
E—n, n<é<l; 0=0 5
p= n—=¢ ~l<é<np;, O0=nmn (56a)
Noting that
PZ = (f"'l)2 (56b)

and, in accordance with the second-order scheme developed here, upon keeping terms up
to O(n?), expressions for W/ yppearing above become

W = Ba*{(§—n)? log |E—nl + (1 - &%) +2&n—n’]} (57a)

WD = Ba*{— (1= &) [§(1 =)+ 28n]+ (1 =3¢’} (57b)

WO = Ba(E(E = 1) + (1 =30+ 0(1)] S7d)t

WD = 5;’—' (EB =281 — &%)+ (= 3+ 681+ 5E+ O (n?)} (57¢)
2

T %‘L {E(—8+ 1382 ~6E* + &%) + (8 —39E2+30&* - 7%+ 0(nH)} (570)

wen = 2 (2438 4+ 0m) (578)
2

Wb = 52"—{3-552—54-<'°+0(n)} (57h)
2

WD = ."8"—{-6+4152—zsc‘ —155°+9E° +O(n)}. (7

1 It is noted that terms of order greater than (2—i) appearing in expressions for W/ do not contribute to
solutions when using a second-order scheme.
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Combining eqns (57) tn accordance with eqn (54). recalling the expansion

.

P _
log (1£X)=£X~ 5+ X[« {38

for the case |n| « |¢] and collecting like powers of n7 and ¢, yields finally

W)
B[l: ¥=0

o

& log G+ 31 =& +¢[E —1=2log [Elln— 1S = 1)

I

¥
18

- - - * - A4 ‘;: w3,
+HRlog [+ =D (=Dl + = (- D% = (1= ne

o]

-

’ Y wd + E v N ) 2 ‘—l : M v 4
-%(5'—1)‘(&;“*2)'1'64-%(C'—l)'(s'—lo)n8'+(_(:—82“(115“4*4';‘4-1)'1‘6“. (59)

Along the y-axis, similar simplifications can be achieved. Defining the parameters

C=£ (60a)
Yo s
Y= aT 0¥ (606)

noting, upon keeping terms up to O(n%), that

p"cos n) = (— Yy =3t —=m)y" " n?), myneven; m>=2n=0,24,...
(60¢)
and

ptcos nl = —a(— 1"y ly monodd; m>2a=135,... (60d)

substituting in eqn (54), after expanding the logarithmic term and collecting terms in powers
of ¢ and g, leads to

W)

B = log (= M= D+ =D+ 1) =20 log (e
a” jyeo

.

FO30 log £+ 4T — 1) (© = 13)]e+ flog {~ 33— D/2n* ~ S @2 = n’s

= HC =D =202 =3 (61)

It is observed that. as opposed to cqn (59), eqn (61) is an even function of #, thus
reflecting the symmetry of the problem.
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Fig. 5. Displacement distribution along the x-axis,

4.2. Numericadl results

Numerical results for the normalized displacement, (W/a)/(Pa/D), along the x-axis
(-1 <& == x/a <1) arc shown in Figs 5(a)-(c) for several loading positions: n =0, 0.2,
0.4. In cuch case, the displacement is presented as a family of curves representing plates
defined by cllipticity ¢ = 0. 0.1, 0.2 and 0.4.

Compuring among the figures one notes that the displacements decrease with increasing
cecentricity of the load as well as with increasing ellipticity &. It is observed that for all
ceeentric load positions, 7 > 0, the maximum displacement does not occur under the foree
but instead at an intcrior point,ie.at0 < ¢ <.

The displacement variation along the y-axis with { = y/b is shown in Fig. 6 for
0 € Kl € 1. The maximum displacement is observed to occur at { = 0 and it is noted that
the displacements are considerably reduced with increasing eccentricity and ellipticity.

The effect of ellipticity and eccentricity is most readily seen in Fig. 7 where the
normalized displacement of the centre point, W,D/Pa*, is presented by means of a family
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e 82 04 0.6 08 10 g:i/&
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Q
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o
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‘0.1
b wd
WO ! €=0 (a) n=0
Pa?
2.0 ! 1 1 :

{=) l’]uO‘L

F.E. values : @€ =0 ; 0z =0,2; meg=0.4

Fig. 6. Displacement distribution along the y-axis.

of curves for the various eccentricities as a function of ellipticity for 0 € ¢ < 0.4, thus
providing a quantitative description of the reduction of the displacement with ellipticity. It
can be noted for example, that with £ = 0.2, the centre displacement of the ellipse with
respect to that of a circle (the radius of which is the same as the semi-major radius of the
ellipse) is reduced between 20% for a centrally applied load and by 24% for an eccentric
load with n = 0.4; for ¢ = 0.4, the reduction is between 40 and 46%, respectively. In the
case of a central load, # = 0, it is noted that the displacement ¥, is given by the simple
expression

DW, P .
= = (1= +0(). (62)

a

In Fig. 8, the displacement is shown by a family of curves representing the various
ellipticities and as a function of the eccentricity parameter #. [t is to be noted that the centre
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1 L Il L 't 1 i
0 0.1 02 0.3 ¢ 0.4
Fig. 7. Centre displacement vs ellipticity.
wo
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Fig. 8. Centre displacement vs eccentricity.

displacement W, according to eqn (59) or eqn (61) is a quaderatic function of n, as reflected
by the zero slopes of the curves at n = 0.

4.3. Accuracy of solution and discussion

Since there exists no previous solution to the present problem, in order to provide an
indication of the accuracy of the BPM solution, displacements for specific values of ¢ and
n were calculated by means of a finite element technique ; these calculated values are shown
in Figs 5 and 6.

It is noted that although the BPM and finite element solutions diverge with in-
creasing values of & and 5, nevertheless the discrepancy between the two solutions is less
than 10% even for values of € = 0.4 and n = 0.4. (Results obtained for larger values of ¢
and n, e.g. £ = n = 0.5, reveal that for such values, the BPM no longer leads to solutions
of admissible accuracy.)

From a comparison of the results, the BPM is scen to yield lower bounds for the
displacements; such results are consistent with the conclusions given in Ref. [4], namely
that the BPM yields upper bounds to the stiffness of elastostatic systems. Finally, it may
be concluded that for moderate ellipticities and eccentricities, say ¢ < 0.4, n < 0.4, the BPM
represents a relatively simple method of solution which leads to reasonably accurate results.

Acknowledgement—The author wishes to thank his colleague, Dr L. Levit, Tel-Aviv University, for obtaining the
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